Rats subjected to chronic-intermittent hypoxia have increased density of noradrenergic terminals in the trigeminal sensory and motor nuclei.

نویسندگان

  • Pari Mody
  • Irma Rukhadze
  • Leszek Kubin
چکیده

Rodents subjected to chronic intermittent hypoxia (CIH) are used to investigate the mechanisms underlying the consequences of the obstructive sleep apnea (OSA) syndrome. Following CIH, rats have an increased density of noradrenergic terminals in the hypoglossal motor nucleus which innervates lingual muscles that protect the upper airway from collapse in OSA patients. Here, we investigated whether such an increase also occurs in other brainstem nuclei. Six pairs of male Sprague-Dawley rats were exposed to CIH or sham treatment for 10h/day for 35 days, with O(2) level oscillating between 24% and 7% every 3min. Brainstem sections were immunohistochemically processed for dopamine-β-hydroxylase, a marker for norepinephrine. Noradrenergic terminal varicosities were counted in the center of the trigeminal motor nucleus (Mo5) and the interpolar part of the spinal trigeminal sensory nucleus (Sp5). In the Mo5, noradrenergic varicosities tended to be 9% more numerous in CIH- than sham-treated rats, and in the Sp5 they were 18% more numerous in CIH rats (184±9 vs. 156±8 per 100×100μm counting box; p=0.03, n=18 section pairs).These data suggest that CIH elicits sprouting of noradrenergic terminals in multiple motor and sensory regions of the lower brainstem. This may alter motor and cardiorespiratory outputs and the transmission of cardiorespiratory and motor reflexes in CIH rats and, by implication, in OSA patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of chronic intermittent hypoxia on noradrenergic activation of hypoglossal motoneurons.

In obstructive sleep apnea patients, elevated activity of the lingual muscles during wakefulness protects the upper airway against occlusions. A possibly related form of respiratory neuroplasticity is present in rats exposed to acute and chronic intermittent hypoxia (CIH). Since rats exposed to CIH have increased density of noradrenergic terminals and increased α(1)-adrenoceptor immunoreactivit...

متن کامل

Reduced c-Fos expression in medullary catecholaminergic neurons in rats 20 h after exposure to chronic intermittent hypoxia.

Persons affected by obstructive sleep apnea (OSA) have increased arterial blood pressure and elevated activity in upper airway muscles. Many cardiorespiratory features of OSA have been reproduced in rodents subjected to chronic-intermittent hypoxia (CIH). We previously reported that, following exposure to CIH, rats have increased noradrenergic terminal density in brain stem sensory and motor nu...

متن کامل

ارتفاع شبیه‌سازی شده بیشتر از تمرین هوازی، مسیر سازشی مرتبط با PGC-1α را بطرف آنژیوژنز در بافت قلبی موش‌های نر نژاد ویستار پیش می‌برد

Background & Aims: Hypoxia and exercise training increase the capillary density of the muscle and the heart and is one of the important reasons for the development of aerobic exercise and the prevention and treatment of many diseases. The purpose of this study was to compare the effects of simulated heights and aerobic training on PGC-1α angiogenesis in the heart tissue. Materials & Methods: T...

متن کامل

Chronic intermittent hypoxia alters density of aminergic terminals and receptors in the hypoglossal motor nucleus.

RATIONALE Patients with obstructive sleep apnea (OSA) adapt to the anatomical vulnerability of their upper airway by generating increased activity in upper airway-dilating muscles during wakefulness. Norepinephrine (NE) and serotonin (5-HT) mediate, through α₁-adrenergic and 5-HT₂A receptors, a wake-related excitatory drive to upper airway motoneurons. In patients with OSA, this drive is necess...

متن کامل

Corticofugal projection patterns of whisker sensorimotor cortex to the sensory trigeminal nuclei

The primary (S1) and secondary (S2) somatosensory cortices project to several trigeminal sensory nuclei. One putative function of these corticofugal projections is the gating of sensory transmission through the trigeminal principal nucleus (Pr5), and some have proposed that S1 and S2 project differentially to the spinal trigeminal subnuclei, which have inhibitory circuits that could inhibit or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience letters

دوره 505 2  شماره 

صفحات  -

تاریخ انتشار 2011